There are many different components on an F1 car designed to take advantage of aerodynamics and the effects of downforce. These include visible parts of the car, like the front and rear wing, but there are also parts called bargeboards that play a key aerodynamic role in F1 cars.
Bargeboards are components of F1 cars, and some other open-wheel race cars, which help to redirect air flow and make the car more aerodynamic. They are located between the front wheels and the side pods of the car, and they also help cool internal components through this redirection of air.
To get a full understanding of what a bargeboard is, without going too far into the technical side of things, it will be helpful to gain a basic understanding of aerodynamics. This will allow you to fully grasp the importance and effectiveness of bargeboards on F1 cars.
Some Aerodynamic Basics
A Simplified Explanation
Aerodynamics is a complex discipline, but there are some simple concepts within it that make understanding how an F1 car works and achieves such high speeds much easier. We will avoid the complex physics, and thus it won’t be a complete explanation. However, it will be more than enough for you to get to grips with the bargeboards and general aerodynamics of the car.
Essentially, aerodynamics involvesmanipulating the airflow around the car. Aerodynamics are not exclusive to F1, as even your road car will have some elements of aerodynamics built into it to make the car more fuel efficient. This makes sense when you think of air as a fluid, which although it technically is, can seem quite difficult to do when we usually think of fluids as liquids.
Air As A Fluid
But it is the way that air molecules behave that makes air act like a fluid, rather than its physical gaseous state. The air around you is a mix of moving air molecules, and the idea of F1 cars is to be able to move through these molecules with as much ease as possible. They do this by building them to be aerodynamic, that is to move through the air easily.
Imagine sitting in the passenger seat of your road car and putting your hand out the window. If you put it flat against the direction you are driving as if you are high fiving the air, you will feel it being pushed back towards the rear of the car. If you then shape your hand like a fin, with fingertips pointing straight forwards, you will feel much less resistance as if you are cutting through the air.
Cutting Through The Air
This is basically what F1 aerodynamics aims to achieve. With the cars shaped in certain ways, and with various different aerodynamic components, they can cut through the air in order to go faster. Usually this involves minimizing the surface area of the car that is in contact with the air, allowing it to “slice” through the air without being held back too much.
Three types of air play key roles in F1. The first is called clean air. This is air that is not being disturbed by the car or any other cars. This is the kind of air that the leader of the race will drive through ahead of the others, and the kind of air that any car with a big enough gap in front of it, usually around 5 seconds, will also be driving through.
Dirty Air
The next type of air is turbulent or dirty air. This is the kind of air that cars generate out the back of them due to the way that their various components interact with the air around them. We will talk more about why this happens in a moment, but essentially as the air travels over and through F1 cars it gets very jumbled up and ends up moving around unpredictably.
This air is difficult to drive through as the car behind cannot generate much downforce due to the manic nature of the air molecules moving around. This kind of air can be diverted away from the body of the F1 car using the third type of air which is known as a vortex, with the plural being vortices. These are controlled spirals of air that can act as a barrier to dirty air.
Downforce Is Key Too
It is not just other cars that generate this dirty air though, as the tires of every car will also generate some as well. But avoiding this kind of air is important for another reason, known as downforce. This is the other side of the aerodynamic coin. Although being aerodynamic will allow you to go faster, it is downforce that gives F1 cars the grip they need to take corners at high speeds.
The Basics Of Downforce
As we have said, aerodynamics allows the cars to move through the air with ease, but there is also the concept of downforce to consider. Downforce is exactly what it sounds like. It is the force on the car generated by the air above it that pushes it down into the ground. This pushes the tires into the ground and thus gives them more grip, allowing the car to take corners very fast.
Extra Grip
It is a very useful force as it allows the car to make use of extra grip without adding extra weight to the car, which would also push the car into the ground. But extra weight wastes power, which means the car would end up losing speed everywhere else. Downforce works through a simple pressure difference between the top parts of the car and the bottom parts.
Things like the front and rear wings generate this pressure difference by passing air over the top of them at fairly low speeds, and then the air underneath he wings travels much faster. The slow-moving air generates an area of high pressure, and the fast-moving air generates an area of low pressure. The high-pressure area at the top of the wing thus pushes down into the low-pressurearea below it.
What About Drag?
This pushes the car into the ground and thus gives it more grip. Various other components on the car do similar things, taking advantage of pressure differences above and below them to generate downforce. However, there is a third concept we need to consider as well, known as drag. This is the enemy of aerodynamics and comes along with downforce generation.
Drag is the force that you feel with your hand out the window in a high-five position. The wings and various parts of the car generate drag by default and minimizing this is what aerodynamics is all about. But in order to generate enough downforce, the wings and other components needs to be able to generate pressure differences above and below them.
This often means they create a bit of drag as well. This is where things like DRS come in, which we discuss in more detail here. When closed the car generates a lot of downforce in the corns, but a bit of unfortunate drag on the straights. When DRS is opened, it temporarily reduces the drag effect of the back wing, allowing the car to be more aerodynamic before it closes again for the next corner.
The Balance
Finding the balance between aerodynamics and downforce generation is key, and components such as the bargeboard are used to do this.
What Is A Bargeboard In F1?
Multipurpose Component
The bargeboard was first introduced by McLaren in 1993. It is an aerodynamic component that sits between the front wheel and the side pod, which contains the air intakes for the internal components of the car. The bargeboard has to deal with all three types of air, with the clean air coming across the front of the car being directed into these large air intakes forcooling purposes.
The turbulent air that comes off the front tires is redirected away from the body of the car by the vortices created by parts of the front wing as well as some extra parts of the bargeboard itself. These are called turning vanes, and they help to generate vortices that act to create a vortex seal around the base of the car, preventing any dirty air getting underneath and messing up the balance.
Complex Structures
Over the years bargeboards have gotten very complicated, and teams are constantly evolving their own designs for maximum aerodynamic effect and minimal drag. However, they are simply used to redirect airflow in favorable ways, both to keep the car aerodynamically stable and to cool the internal components as well.
Final Thoughts
Bargeboards are common to all F1 cars, although they weren’t always. They are used to redirect air into, underneath and around the car to maximize the aerodynamics. They also redirect air into the air intakes that allow the radiators to keep the engine cool. Bargeboards work using some basic principles of aerodynamics and general physics, and help the cars go faster, especially on the corners.